The Big Apple & a tree

Every trip to Manhattan has forced me to carve out a little more room in my heart for the Big Apple. This trip was no different. Some highlights were:

  • Eating sushi with Shaina and seeing her art collective located in East Village
  • Running (and getting lost) in Central Park. Ran close to 7.5 mi!
  • Catching up with Amit over gyros, The Met’s art, and walks
  • Visiting one of Ang’s and my favorite spots, The High Line, early in the morning before it became crowded with tourists
  • Visiting the 9/11 memorial, which was beautifully heartbreaking
  • Eating sundubu in K-town and having to explain multiple times that I can’t understand/speak Korean
  • Stumbling upon a farmer’s market on Greenwich St. in Lower Manhattan—ate a pint of juicy raspberries!
  • Wandering through a street fair on 4th Av between 8th and 14th.
  • Window shopping in Upper East Side while munching on Laudree macarons
  • Catching up with Big Dawg and Josh as well as meeting AnnMarie over dinner
  • Giving French tourists directions! (hopefully they were correct…)

I love that the city has a plethora of personalities, from elegant Upper East Side to artsy Greenwich Village to touristy Midtown to academic Upper West etc. And I love the accelerated pace of life—there’s always something to do and people to see and places to explore and food to try and trails to run and STUFF to experience. While seeing friends was THE highlight of the trip, I also thoroughly enjoyed exploring the city solo. I could change directions in a heartbeat—if a block looked interesting, I found myself walking in a new direction—following my two feet for as far as they could carry me, which meant walking almost 200 blocks on Saturday (from Wall Street up to 89th and 89th back down to Bleecker St). Hopefully life will lead me back to the big city in the near future.

In other news, a powerful thunderstorm decided to display the raw power and beauty of nature this afternoon. A tree crashed into the dock, leaving the worst damage the dock has seen in 17 years. Pictures of NY and the tree to come.

Somehow last night’s convo jumped from Boeing’s derailed fuselages to our first plane rides. Michelle’s was when she was 3 and a half, with dad, on their way to TW for our uncle’s wedding. Apparently when they got to atl, Mishy said she was tired and wanted to go home. I dug up the photo. She looks sleepy.

Somehow last night’s convo jumped from Boeing’s derailed fuselages to our first plane rides. Michelle’s was when she was 3 and a half, with dad, on their way to TW for our uncle’s wedding. Apparently when they got to atl, Mishy said she was tired and wanted to go home. I dug up the photo. She looks sleepy.

Kids need to find their own opportunities. Bryan needs to find his own internships if he wants to intern. Look at us three brothers- we made our own histories. You studied. I went into the movie business. Kuang-nan went to sit in jail.
Uncle Ken talking to my dad


Scientists reveal circuitry of fundamental motor circuit

Scientists at the Salk Institute have discovered the developmental source for a key type of neuron that allows animals to walk, a finding that could help pave the way for new therapies for spinal cord injuries or other motor impairments related to disease.

The spinal cord contains a network of neurons that are able to operate largely in an autonomous manner, thus allowing animals to carry out simple rhythmic walking movements with minimal attention—giving us the ability, for example, to walk while talking on the phone. These circuits control properties such as stepping with each foot or pacing the tempo of walking or running.

The researchers, led by Salk professor Martyn Goulding, identified for the first time which neurons in the spinal cord were responsible for controlling a key output of this locomotion circuit, namely the ability to synchronously activate and deactivate opposing muscles to create a smooth bending motion (dubbed flexor-extensor alternation). The findings were published April 2 in Neuron.

Motor circuits in the spinal cord are assembled from six major types of interneurons—cells that interface between nerves descending from the brain and nerves that activate or inhibit muscles. Goulding and his team had previously implicated one class of interneuron, the V1 interneurons, as being a likely key component of the flexor-extensor circuitry. However when V1 interneurons were removed, the team saw that flexor-extensor activity was still intact, leading them to suspect another type of cell was also involved in coordinating this aspect of movement.

To determine what other interneurons were at play in the flexor-extensor circuit, the team looked for other cells in the spinal cord with properties that were similar to those of the V1 neurons. In doing this they began to focus on another class of neuron, whose function was not known, V2b interneurons. Using a specialized experimental setup that allows one to monitor locomotion in the spinal cord itself, the team saw a synchronous pattern of flexor and extensor activity when V2b interneurons were inactivated along with the V1 interneurons.

The team also showed that this synchronicity led to newborn mice displaying a tetanus-like reaction when the two types of interneurons were inactivated: the limbs froze in one position because they no longer had the push-pull balance of excitation and inhibition that is needed to move.

These findings further confirm the hypothesis put forward over 120 years ago by the Nobel Prize-winning neuroscientist, Charles Sherrington, that flexor-extensor alternation is essential for locomotion in all animals that have limbs. He proposed that specialized cells in the spinal cord called switching cells performed this function. After 120 years, Goulding and researchers have now uncovered the identity of these switching cells.

"Our whole motor system is built around flexor-extension; this is the cornerstone component of movement," says Goulding, holder of Salk’s Frederick W. and Joanna J. Mitchell Chair. "If you really want to understand how animals move you need to understand the contribution of these switching cells."

With a more thorough understanding of the basic science around how this flexor-extensor circuit works, scientists will be in a better position to, for example, create a system that can reactivate the spinal cord or mimic signals sent from the brain to the spinal cord.